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Abstract The renewed interest in all-optical switching has
led to more detailed experimental investigations of nonlin-
ear optical properties of materials within wide wavelength
ranges. The objectives of these studies are discussed here in
the context of the availability of suitable computational data
that might be compared with the results of the experimental
research. It is concluded that the currently available data are
insufficient and should be augmented to provide better
guidance for experimental work.
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Introduction

Calculations of molecular hyperpolarizabilities are a stan-
dard feature of many packaged computational chemistry
programs. There has been a large number of studies where
quantum chemistry tools have been utilized to predict the
values of the hyperpolarizabilities, develop structure-
property rules of thumb, interpret experimental results. In
fact, it may seem like the computation chemistry commu-
nity has progressed to the point where in silico studies may
largely replace cumbersome chemical syntheses and tedious
experiments directed at finding new materials with opti-
mized nonlinear optical (NLO) properties. This is quite
important in view of the current renewal of interest of

experimentalists and theoreticians in molecular materials
for all-optical switching (e.g. [1, 2]). However, the
computations carried out currently are not sufficient for
full characterization of parameters which are crucial for
some practical applications of NLO materials. This paper
presents an experimentalist"s viewpoint and calls for better
convergence of computational and experimental studies of
cubic NLO properties.

Fundamentals

The NLO properties of molecules are usually discussed in
terms of the hyperpolarizabilities βijk and γijkl defined by
the power expansion of the Cartesian components of the
dipole moment μi against the components of the electric
field Fj:

1, 2

mi ¼ mið0Þ þ aijFj þ bijkFjFk þ gijklFjFkFl þ . . . ð1Þ
Commonly, it is stated that the linear polarizability α is

responsible for the linear optical properties of molecules
while the first hyperpolarizability β is responsible for
quadratic (second-order) NLO effects and the second
hyperpolarizability γ is responsible for cubic (third-order)
NLO effects. It may be noted that some authors refer to β as
first-order hyperpolarizability and γ as second-order hyper-
polarizability. In view of this author, such terminology
should be avoided to prevent confusion about the order of
relevant NLO effects.

1 It should be noted that theoretical and experimental papers often
differ in the inclusion or omission of 1/n! factors in the power
expansion.
2 Using Einstein"s summation convention.
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To convert from microscopic hyperpolarizabilities to
macroscopic susceptibilities denoted as χ(n) and defined
through the power dependence of the polarization Pi

Pi ¼ Pið0Þ þ #
ð1Þ
ij Fj þ #

ð2Þ
ijk FjFk þ #

ð3Þ
ijklFjFkFl þ . . . ð2Þ

one needs to account for molecular orientations and local field
effects. Since optics deals with oscillating fields, Eqs. 1 and 2
need to be modified to account for time dependences, which
is conveniently carried out by considering Fourier compo-
nents of F, μ and P and frequency-dependent hyperpolariz-
abilities and susceptibilities. For example, consecutive order
Fourier components of μ can be presented as

mi wð Þ ¼ aij wð ÞFj wð Þ
mð2Þ
i w1ð Þ ¼ bijk w1;w2;w3ð ÞFj w2ð ÞFk w3ð Þ

mð3Þ
i w1ð Þ ¼ gijkl w1;w2;w3;w4ð ÞFj w2ð ÞFk w3ð ÞFl w4ð Þ

: ð3Þ

Different combinations of frequencies in Eq. 3 lead to
various NLO effects, each of which can be termed "frequency
mixing" of a certain type. We are concerned here with the
cubic NLO effects, which are due to μ(3). Traditionally, two
of these effects are considered sufficiently practically impor-
tant to be included in quantum chemistry computations of
cubic NLO properties of molecules: third harmonic genera-
tion (THG) and intensity dependent refractive index (IDRI).
However, because of practical difficulties in implementing
THG for generation of new frequencies of laser light (usually
a cascade of two frequency mixing processes, ω+ω→2ω and
2ω+ω→3ω is simply used instead in commercial frequency
triplers) the actual interest in this process is not as high as in
that of IDRI. The latter process is due to the degenerate cubic
hyperpolarizability γ(-ω;ω,−ω,ω) and its macroscopic coun-
terpart χ(3)(-ω;ω,−ω,ω). In technical language, IDRI is usually
referred to as nonlinear refraction and is described by a value
of the nonlinear refractive index n2 defined by Δn=n2I where
I is the light intensity. It can be shown that n2 is proportional
to the real part of χ(3)(-ω;ω,−ω,ω). On the other hand, the
imaginary part of χ(3)(-ω;ω,−ω,ω) describes another important
NLO process: nonlinear absorption, usually characterized by
the value of the nonlinear absorption coefficient α2 or the
molecular parameter, two photon absorption cross section σ2.
It follows that, on a microscopic scale, it is important to know
both the real and the imaginary components of the complex
hyperpolarizability γ(-ω;ω,−ω,ω) of an NLO molecule since
their values are decisive for the applicability of a NLO
material built of such molecules.

All-optical switching

Both nonlinear refraction and nonlinear absorption have
potentially many applications. Nonlinear absorption [3] is

well known to lead to two-photon fluorescence which finds
application in two-photon microscopy. The natural spatial
selectivity of the two-photon absorption process, which, for
a focused laser beam is essentially confined to the area very
close to the focus only, can be also used in 3D lithography
and 3D optical memory devices. Other applications of
nonlinear absorption include power limiting: a process
which can be used to protect optical sensors from high
power laser pulses. When talking about applications of
nonlinear refraction, one usually has in mind the Holy Grail
of modern photonics: all-optical switching (AOS) of
telecommunication signals. This remains elusive due to
the difficulties of obtaining nonlinear materials with the
right values of suitable material parameters [4]. Figure 1
shows an example of a device that is capable of all-optical
switching: the nonlinear waveguide coupler originally
suggested by Jensen [5]. The principle of the operation of
such a device is that a light pulse of low intensity is
normally transferred from one arm of the coupler to the
other by coupling of the two identical waveguide channels.
A strong light pulse, however, will always stay in the
original channel: the reason being that a high intensity light
pulse causes modification of the refractive index inside the
channel it travels, causing the loss of coupling with the
other waveguide channel. What follows is the possibility of
controlling light by light: if only a weak light pulse (signal)
is introduced into the device in Fig.1, it will exit the device
through the second channel, however, in the simultaneous
presence of another strong pulse (control), it will exit
together with it through the first channel.

For the coupler (and many similar concept devices
performing all-optical switching) to operate properly, it is
necessary that the control laser pulse is able to acquire a
nonlinear phase shift Δf ¼ 2pΔn L

l ¼ 2pn2I L
l on the order

of π as it traverses the length of the device. Obviously, an
obstacle in that would be the presence of either nonlinear or

Low power signal

Low power signal switched by high power pump

Fig. 1 Principle of all-optical switching in Jensen"s half-beat
directional coupler. The thin arrow is the signal, the thick arrow is
the controlling pulse
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linear absorption of light. The requirements for a material
to be used in a nonlinear coupler are therefore the
following: high Re(χ(3)), low Im(χ(3)), low linear absorp-
tion. Stegeman and coworkers [6, 7] have shown that it is
imposible to obtain AOS at all, if the ratio of Im(χ(3))/ Re
(χ(3)) is too high. They introduced a merit factor T which

is defined as T ¼ a2l
n2

¼ 4p
Im #ð3Þð Þ
Reð#ð3ÞÞ . For the all-optical

switching to be feasible it is necessary that T<1. It should
be noted that, for a material which is built of molecules of
only one kind, having the cubic hyperpolarizability γ, the
T factor will be equal T ¼ 4p Im gð Þ

Re gð Þ. Therefore, in principle,
the value of this crucial parameter should be accessible
both from experimental measurements and from computa-
tional chemistry calculations performed on the molecule of
interest.

Another factor isW, one-photon merit factor, W ¼ n2Imax
a1l

1.
This condition is framed in terms of the maximum light
intensity that can be used to drive the all-optical switch Imax.
Obviously, a material with strong one-photon absorption,
characterized by the one-photon absorption coefficient α1, is
not able to perform well in an all-optical switch unless its
nonlinearity is very high. The condition of low one-photon
absorption can be inverted to demonstrate the wide range of
parameters exhibited by today"s nonlinear optical materials.
Figure 2 shows mapping of the materials nonlinearity given
by n2 in cm2/W and one-photon absorption represented by
the loss coefficient α1 expressed in dB/km to the design
parameters of a conceptual AOS device: the minimum light
intensity Imin needed to operate it and the maximum optical
pathlength of a device. The maximum path length of a
device can be approximated as the "absorption length", i.e.,
α1

−1 whereas the minimum intensity needed to operate the

device is the result of assuming that the all-optical device
needs to acquire a nonlinear phase shift Δf equal to π.

Datapoints included in the plot are representative values
attainable in some of the nonlinear optical materials
considered for AOS applications. It is interesting to find
that the most important optical material: fused silica glass
(SiO2 glass) is in some respects superior to all other
currently considered NLO materials. A very low value of
α1 (on the order of 0.1 dB/km) means that a device made of
this material can be several tens of kilometers long. This
allows for AOS with relatively low light intensity of the
order of MW/cm2 even though n2 of silica is only on the
order of 10−16 cm2/W [8]. Glasses containing heavier
atoms, eg. intensely investigated chalcogenide glasses [9,
10] may have nonlinear optical properties that, in the
telecommunication wavelength ranges, are two-three orders
of magnitude better than that of silica. However, their
performance is limited by their one-photon absorption (and
other loss mechanisms like scattering) which is on the order
of dB/m. Therefore, their overall suitability for AOS
characterized by the minimum light intensity needed to
operate the switch is inadequate. A similar limitation is
present for materials such as conjugated polymers far from
their material resonances. An example here may be
substituted poly(p-phenylenevinylene)s which exhibit rela-
tively high optical nonlinearities [11] but the losses of both
two-photon and one-photon type are substantial. The
highest n2 for PPV-like materials was measured in
unsubstituted PPV [12, 13] which is, however, a difficult
material to handle and implement because of its insolubility
and because of the high scattering losses due to tendency of
the polymer chains to order.

It is also necessary to consider the case of the use of
materials that possess very high refractive nonlinearity in
the wavelength range corresponding to their strong one-
photon absorption. Obviously, such nonlinearity may be
much higher than that available away from material
resonances. However, as seen in Fig. 2, for a hypothetical
case of very strong on-resonance nonlinearity, the high
value of n2 would be accompanied by a high value of α1

and in result, no improvement in the light intensity needed
to operate the device can be obtained.

The value of the merit factor W, or the value of the
critical intensity Imin is difficult to predict from theoretical
computations. In principle, the absorption coefficient α1 at
a given wavelength is available from a routine quantum
chemistry computation on a molecule of an NLO chromo-
phore, which should provide the oscillator strengths and
energies of absorption transitions, which, together with
some assumptions about the electron-phonon coupling and
other absorption band broadening mechanisms, should lead
to reasonable prediction of an absorption spectrum of a
material. Coupling that with a prediction of the value of n2

Fig. 2 Illustration of the material parameters achievable in NLO
materials and resulting device performance. 1 – fused silica, 2- typical
conjugated polymer (e.g. soluble PPVs) far from one-photon
absorption. Similar values are achievable in chalcogenide glasses. 3-
precursor-route PPV at 800 nm. 4- strong nonlinear chromophore
under one-photon resonant conditions. The straight lines denote the
minimum light intensity required to obtain the all-optical switching
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should, in principle, lead to the evaluation of W, if Imax is
known from device design conditions, or to the calculation
of Imin. To this author"s knowledge, such theoretical
predictions have not been attempted yet.

Experimental results

As indicated above, to evaluate suitability of a cubic
nonlinear material for real life applications one needs to
know full dispersion of the complex χ(3). For materials with
molecular chromophores this translates into determination
of the dispersion of the complex γ.

The experimental methods that can be used to evaluate full
spectra of γ can be divided into two groups: methods using
discrete wavelength measurements which can be combined
to provide Re(γ) and Im(γ) spectra and methods using white
light supercontinuum to probe a wide range of wavelengths
at the same time. The most common technique that allows
for the determination of the cubic nonlinearity is that of Z-
scan [14] performed with a monochromatic laser beam (but
it should be noted that short pulses are relatively spectrally
broad: typically on the order of 10nm for fs pulses). Z-scan
allows for the simultaneous determination of the refractive
and absorptive component of the cubic nonlinearity: usually
in terms of the nonlinear refractive index n2 and the two-
photon absorption coefficient α2. For commonly performed
solution measurements the concentration dependences of the
macroscopic nonlinearity parameters allow one to determine
the complex hyperpolarizability γ of the solute [15]. The
disadvantage of Z-scan compared to time-resolved techni-
ques of measurements is that it does not provide any info on
the mechanisms of NLO responses. The known caveats are

that one needs to use low repetition rate to avoid cumulative
effects [16, 17] and to watch for signs of photochemical
instability.

The advent of the self-mode-locked femtosecond-pulse Ti-
sapphire lasers and of efficient optical parametric amplifiers
has led to relatively easy availability of high power tunable
sources of light, suitable for the investigations of nonlinear
optical properties of materials by Z-scan within wide
wavelength ranges. Such studies, are however, relatively rare.
One of the reasons is the tediousness of the process of
obtaining such data. The author of this contribution has been
active in the field of experimental studies of cubic nonlinear
optical properties of molecules and materials for over two
decades and has been concentrating, among others, on
providing data on dispersion of cubic hyperpolarizabilities
of molecules (especially organometallic molecules) [18].

Systematic studies of the complex cubic hyperpolarizability
carried out using the Z-scan technique with high-power low
repetition rate femtosecond laser pulses have led to the
determination of the dispersion curves for a number of
interesting structures, see eg [19–22]. However, the understand-
ing of the obtained relationships remains far from satisfactory.
Since both the real and imaginary part of the hyperpolariz-
ability are determined in Z-scan, it is tempting to treat them in
a unified manner, as components of some model complex
expression [18, 23], or in terms of the nonlinear Kramers-
Kronig relation [24]. These approaches lead, however, to a
number of conceptual and practical difficulties [25, 26].

In principle it is possible to express the experimentally
determined complex γ as a combination of some complex
terms resembling those appearing in the sum-over-states
(SOS) expression [27] for γ which has been modified to
include damping factors Γi, eg.:

gijkl w1;w2;w3;w4ð Þ / }
X
p;q;r
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ð4Þ

frequencies. It may be noted that for the degenerate
hyperpolarizability γ(-ω;ω,−ω,ω) this leads to terms that
exhibit both one-photon and two-photon resonances. For
example, a term of the form A

wn0�w�iΓ nð Þ wn0�iΓ nð Þ wm0�w�iΓmð Þ
would give a resonance (and γ enhancement) at
frequencies ω close to those of one-photon transitions,

A
wn0�w�iΓ nð Þ wn0�2w�iΓ nð Þ wm0�w�iΓmð Þ which gives a resonance
when ω=ωn0/2.

As described in [18, 25, 26] it may be sometimes
possible to guess the form of a suitable simplified
expression that can be used to approximate the experimen-
tal data. In general, however, the number of terms that may
be of importance in the SOS expression is simply too big
for this approach to be useful in numerical fitting of the
experimental data.
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It is not clear if it is practical to search for "dominating"
terms in expressions like Eq. 4. In some simple cases like
that of Coumarine 307 [26] it may be even possible to
describe the dispersion by a single term. This approach is
not likely to be general. Figure 3 shows the case of the
dispersion of the hyperpolarizability in Rhodamine B
chloride [26]. The two-photon absorption spectrum can be
treated as two overlapping bands that can be approximated
as a sum of two Lorentzians of the form

g ¼
X Ai

ni � 2n � iΓ i
ð5Þ

The parameters giving a reasonable fit for the imaginary
part of the hyperpolarizability provided in [26] are A1 =
4.6x10-31, ν1 = 24600 cm−1 and Γ1 = 1480 cm−1, A2 =
5.0x10-31, ν2 = 28350 cm−1 and Γ2 = 1100 cm−1. The
dashed line in Fig. 3 denotes the real part of this complex
expression. We have concluded in [26] that the experimen-
tally determined real part of γ must contain contributions
additional to those due to the two-photon resonances. Apart
from the possibilities that arise from the multitude of terms
in Eq. 4 there are also other factors that may need to be
taken into account. One of such factors may be due to the
presence of excited state molecules that may contribute to
the measured nonlinear response. Following the discussion
eg in [28], if the concentration of excited state molecules is
equal to Ne, the polarization may in such a case be
presented as

P ¼ #ð1Þg E þ #ð3Þg EEE þ Ne

N
#ð1Þe � #ð1Þg

� �
E þ . . . ð6Þ

where the index e relates to excited states and N is the total
concentration of nonlinear chromophore molecules.

Depending on whether the excited states are generated by
the one-photon or the two-photon absorption processes, the
steady-state excited state density Ne can be considered
proportional to E2 (i.e., linearly proportional to the intensity)
or to E4 (square of the intensity) and the effective hyper-
polarizability can therefore contain a term that may be
proportional to the imaginary part of α or to the imaginary
part of γ. In the case of Rhodamine it may be expected that
the dominant contribution in the wavelength range of interest
comes from two-photon absorption. We attempted therefore
to interpret the experimental data by assuming that

Re gð Þeff ¼ Re gð Þ þ CIm gð Þ ð7Þ

where the constantC accounts for the change of the refractive
properties of the chromophore molecules upon excitation,
more explicitly, one can assume that C / ae � ag

� �
.

However, the actual mechanism of the refractive index
change upon excitation does not have to be related to the
change of the molecule polarizability only. One cannot
exclude effects due to molecular orientation, photochemical
changes and even thermooptic effects.

Figure 3 shows the result of the calculation based on the
above assumption as a full line. A relatively good fit
(obtained by taking A1 = 4.6x10−31, ν1 = 25000 cm−1 and
Γ1 = 1480 cm−1, A2 = 5.0x10-31, ν2 = 28800 cm−1 and Γ2 =
1100 cm−1) for the range <14000 cm−1 indicates that the
experimental results for Re(γ) for Rhodamine B chloride
may be considered tainted by the presence of two-photon
generated excited states. Careful intensity dependence studies
should be carried out to confirm or reject this possibility: in
fact, the C factor should be found proportional to the light
intensity used for the determination of the effective γ values.

Looking at this case from the point of view of the
possibility of predicting NLO behavior of molecules based
on quantum chemical computations, we note that theoret-
ical prediction of the effective nonlinearity would require,
among others, the knowledge of the frequency dependences
of the linear polarizabilities of the ground state and excited
state molecules. Such information is not typically included
in the datasets obtained from theoretical computations,
although it should be, in principle, relatively easily
obtained, possibly with the help of the Kramers-Kronig
transform which is discussed below in the context of its
nonlinear optics applications.

Kramers-Kronig transforms

In the domain of linear optics one often takes advantage of
the fact that the real and imaginary parts of the linear
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Fig. 3 Rhodamine B data fitted as two Lorentzians. Dispersion of the
complex hyperpolarizability of Rhodamine B chloride was determined
from Z-scan measurements on ethanol solution containing 1.0 % of
the dye. The blue full line is the fit by the imaginary part of a sum of
two complex Lorentzians as described in the text and the dashed line
is the real part of the same sum of Lorentzians. The red full line is the
result of assuming the presence of an additional induced part of the
nonlinearity
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susceptibility χ(1) are related through the Kramers-Kronig
transform. It would be very useful if this kind of a relation
could be used for discussing nonlinear refraction: simply
because of the fact that measurements of nonlinear
absorption are easier than those of nonlinear refraction,
e.g., because the measurements of two-photon absorption of
a dye in a solvent usually involve only absorption of a dye
while the solvent shows no nonlinear absorption, the same
being not true for nonlinear refraction where both compo-
nents of a solution do contribute to the nonlinear refraction
coefficient. Also, the two-photon absorption cross sections
can often be conveniently determined through measure-
ments of two-photon induced fluorescence [29, 30]. There
has been much discussion of the use of the Kramers-Kronig
transform in nonlinear optics (eg [24, 31–33]), however
there is confusion concerning even the basic issue whether
this transform can be used at all in the case of nonlinear
refraction. Indeed, Boyd states in his "Nonlinear Optics"
book [34] that "… Probably the most important process for
which it is not possible to form a Kramers-Kronig relation
is for the self-induced change in refractive index …
Moreover, one can show by explicit calculation … that
for specific model systems the real and imaginary parts of
χ(3) are not related in the proper manner to satisfy the
Kramers-Kronig relations". Despite that, a number of
papers has been written where the nonlinear refraction and
nonlinear absorption were considered related through a
relation of the form

Re gð�w;w;�w;w½ � ¼ 2

p

Z1

0

Im g �w0;w0;�w;wð Þ½ �
w02 � w2 w0dw0 ð8Þ

It should be noted that the imaginary part of γ under the
integral is not the same γ which is related to the ordinary
(degenerate) two-photon absorption because of the two
different arguments ω and ω'. Instead, this hyperpolariz-
ability describes the process of non-degenerate two-photon
absorption, i.e., absorbing two photons at once, one of them
at ω, the other at ω' and the resulting excited state being at
ω+ω'. It might be noted that non-degenerate two-photon
absorption spectra may be obtained experimentally in a
relatively straightforward manner by using pump-probe
experiments, especially ones in which the pump is a laser
beam at ω and the probe is white light supercontinuum,
allowing one to obtain the whole spectrum of the two-
photon absorption cross section σ2(ω,ω') for fixed ω.
Unfortunately, a single experiment of this kind, i.e.,
obtaining results for a single value of ω, does not suffice,
a full two-dimensional spectrum of σ2 would be needed to
be able to perform the Kramers-Kronig transform. In the
same way, a theoretical computation of two-dimensional
two-photon absorption spectra is needed if one plans to use

the computed nonlinear absorption data for evaluation of
the theoretical dispersion of the nonlinear refraction.
Although it may be possible in some simple cases to
roughly approximate the values of the non-degenerate
nonlinear absorption [25, 26], this is not a good idea in
the case of molecules with a multitude of excited states and
possible two-photon resonances.

Conclusions

There has been some renewal of interest of experimentalists
and theoreticians in molecular materials for all-optical
switching. However, the typical quantum chemistry
approaches do not provide a complete picture of relevant
parameters that could be compared with the parameters
obtainable from experiments and could be used for
designing better molecules and materials. While it is common
to compute the spectra of the degenerate two-photon
absorption, what is really needed by the experimentalists is
the full hyperpolarizability dispersion curves. From the point
of view of the application potential, it would be optimal if the
computations could provide wavelength dependences of the
merit factors T and W which could be used to identify
wavelength ranges of potential applications.

The presence of additional mechanisms giving rise to
nonlinear refraction and absorption is also of importance
and additional data such as frequency dependences of
excited state polarizability may be useful for predicting the
experimental behavior of NLO materials.

It remains crucial to assess the suitability of the
Kramers-Kronig approaches to the analysis of experimental
and theoretical data. More widespread computations of
non-degenerate two-photon absorption spectra may be
helpful in such analyses.
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